If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+13X+X=0
We add all the numbers together, and all the variables
X^2+14X=0
a = 1; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·1·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*1}=\frac{-28}{2} =-14 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*1}=\frac{0}{2} =0 $
| 119+44+9x+3=180 | | 28=−7x | | 7^(2x-5)^3=343 | | 7^(2x-5)3=343 | | 2y+6=4y+10 | | x2-x-20=2x+8 | | 2x+8=180° | | 2b-5b=-19 | | 29+3x=8 | | 7x+23-6=8 | | 4x+6+x+102=108 | | 20+x×16=352 | | -17x-1-10x+17=-32x+4 | | 5(7d-5)= | | 1=x+50 | | 4(5+x)=11(4x-2) | | (5n-8)(n-4)=0 | | 121/4=3/4+g | | -10+x/6=-9 | | 2x+33∘+3x+20∘=113∘ | | 2b2-7b+3=0 | | 101=19x+25 | | 4(12-x)=9(6x+3) | | 10/3=a/2.5 | | 19x+3=9x-2 | | 24x-26=180 | | (7+x)(12+x)=176 | | Y=x/6+2 | | 15x+3=40 | | 16=(2x+4) | | a+4a-2aa=6 | | y=5,12+4(y+3)= |